4.8 Article

Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912872107

关键词

gram-negative bacteria; lipopolysaccharide binding; outer membrane protein complex

资金

  1. National Institute of General Medical Sciences [GM34821]
  2. National Institute of Allergy and Infectious Disease [AI081059]

向作者/读者索取更多资源

Lipopolysaccharide (LPS) is the major glycolipid that is present in the outer membranes (OMs) of most Gram-negative bacteria. LPS molecules are assembled with divalent metal cations in the outer leaflet of the OM to form an impervious layer that prevents toxic compounds from entering the cell. For most Gram-negative bacteria, LPS is essential for growth. In Escherichia coli, eight essential proteins have been identified to function in the proper assembly of LPS following its biosynthesis. This assembly process involves release of LPS from the inner membrane (IM), transport across the periplasm, and insertion into the outer leaflet of the OM. Here, we describe the biochemical characterization of the two-protein complex consisting of LptD and LptE that is responsible for the assembly of LPS at the cell surface. We can overexpress and purify LptD and LptE as a stable complex in a 1:1 stoichiometry. LptD contains a soluble N-terminal domain and a C-terminal transmembrane domain. LptE stabilizes LptD by interacting strongly with the C-terminal domain of LptD. We also demonstrate that LptE binds LPS specifically and may serve as a substrate recognition site at the OM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据