4.8 Article

Refined LexA transactivators and their use in combination with the Drosophila Gal4 system

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1005957107

关键词

genetic tools; binary transcriptional system

资金

  1. Japan Society for the Promotion of Science
  2. Swiss National Science Foundation
  3. University of Zurich

向作者/读者索取更多资源

The use of binary transcriptional systems offers many advantages for experimentally manipulating gene activity, as exemplified by the success of the Gal4/UAS system in Drosophila. To expand the number of applications, a second independent transactivator (TA) is desirable. Here, we present the optimization of an additional system based on LexA and show how it can be applied. We developed a series of LexA TAs, selectively suppressible via Gal80, that exhibit high transcriptional activity and low detrimental effects when expressed in vivo. In combination with Gal4, an appropriately selected LexA TA permits to program cells with a distinct balance and independent outputs of the two TAs. We demonstrate how the two systems can be combined for manipulating communicating cell populations, converting transient tissue-specific expression patterns into heritable, constitutive activities, and defining cell territories by intersecting TA expression domains. Finally, we describe a versatile enhancer trap system that allows swapping TA and generating mosaics composed of Gal4 and LexA TA-expressing cells. The optimized LexA system facilitates precise analyses of complex biological phenomena and signaling pathways in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据