4.8 Article

Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0914857107

关键词

DNA replication; nucleotide precursors; nucleotide selectivity

资金

  1. National Institutes of Health, National Institute on Environmental Health Sciences [Z01 ES065070]
  2. Swedish Foundation for Strategic Research
  3. Swedish Research Council
  4. Swedish Cancer Society
  5. Swedish Cancer Society, Smartafonden
  6. Basic Science-oriented Biotechnology, Medical Faculty of Umea University
  7. National Institutes of Health [GM032431]

向作者/读者索取更多资源

Measurements of nucleoside triphosphate levels in Saccharomyces cerevisiae reveal that the four rNTPs are in 36- to 190-fold molar excess over their corresponding dNTPs. During DNA synthesis in vitro using the physiological nucleoside triphosphate concentrations, yeast DNA polymerase epsilon, which is implicated in leading strand replication, incorporates one rNMP for every 1,250 dNMPs. Pol delta and Pol alpha, which conduct lagging strand replication, incorporate one rNMP for every 5,000 or 625 dNMPs, respectively. Discrimination against rNMP incorporation varies widely, in some cases by more than 100-fold, depending on the identity of the base and the template sequence context in which it is located. Given estimates of the amount of replication catalyzed by Pols alpha, delta, and epsilon, the results are consistent with the possibility that more than 10,000 rNMPs may be incorporated into the nuclear genome during each round of replication in yeast. Thus, rNMPs may be the most common noncanonical nucleotides introduced into the eukaryotic genome. Potential beneficial and negative consequences of abundant ribonucleotide incorporation into DNA are discussed, including the possibility that unrepaired rNMPs in DNA could be problematic because yeast DNA polymerase epsilon has difficulty bypassing a single rNMP present within a DNA template.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据