4.8 Article

Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1001292107

关键词

lipogenesis; SREBPs; steatosis

资金

  1. Perot Family Foundation
  2. National Institutes of Health [HL-20948, HL-38049]

向作者/读者索取更多资源

Acetyl-CoA carboxylase (ACC), the first committed enzyme in fatty acid (FA) synthesis, is regulated by phosphorylation/dephosphorylation, transcription, and an unusual mechanism of protein polymerization. Polymerization of ACC increases enzymatic activity and is induced in vitro by supraphysiological concentrations of citrate (>5 mM). Here, we show that MIG12, a 22 kDa cytosolic protein of previously unknown function, binds to ACC and lowers the threshold for citrate activation into the physiological range (<1 mM). In vitro, recombinant MIG12 induced polymerization of ACC (as determined by nondenaturing gels, FPLC, and electron microscopy) and increased ACC activity by >50-fold in the presence of 1 mM citrate. In vivo, overexpression of MIG12 in liver induced ACC polymerization, increased FA synthesis, and produced triglyceride accumulation and fatty liver. Thus, in addition to its regulation by phosphorylation and transcription, ACC is regulated at a tertiary level by MIG12, which facilitates ACC polymerization and enhances enzymatic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据