4.8 Article

Circuit topology for synchronizing neurons in spontaneously active networks

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0914594107

关键词

action potential; calcium imaging; microcircuit; spontaneous activity; synchronization

资金

  1. Science Research on Priority Areas [18021008, 17023015, 20019014]
  2. Ministry of Education, Culture, Sports, Science, and Technology of Japan [17650090, 17689004, 19659013]
  3. Sumitomo Foundation [050038]

向作者/读者索取更多资源

Spike synchronization underlies information processing and storage in the brain. But how can neurons synchronize in a noisy network? By exploiting a high-speed (500-2,000 fps) multineuron imaging technique and a large-scale synapse mapping method, we directly compared spontaneous activity patterns and anatomical connectivity in hippocampal CA3 networks ex vivo. As compared to unconnected pairs, synaptically coupled neurons shared more common presynaptic neurons, received more correlated excitatory synaptic inputs, and emitted synchronized spikes with approximately 107 times higher probability. Importantly, common presynaptic parents per se synchronized more than unshared upstream neurons. Consistent with this, dynamic-clamp stimulation revealed that common inputs alone could not account for the realistic degree of synchronization unless presynaptic spikes synchronized among common parents. On a macroscopic scale, network activity was coordinated by a power-law scaling of synchronization, which engaged varying sets of densely interwired (thus highly synchronized) neuron groups. Thus, locally coherent activity converges on specific cell assemblies, thereby yielding complex ensemble dynamics. These segmentally synchronized pulse packets may serve as information modules that flow in associatively parallel network channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据