4.8 Article

Maximum entropy models for antibody diversity

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1001705107

关键词

D regions; immune receptor proteins; statistical models

资金

  1. National Science Foundation [PHY-0650617]
  2. National Institutes of Health [P50 GM071598]
  3. Human Frontiers Science Program

向作者/读者索取更多资源

Recognition of pathogens relies on families of proteins showing great diversity. Here we construct maximum entropy models of the sequence repertoire, building on recent experiments that provide a nearly exhaustive sampling of the IgM sequences in zebrafish. These models are based solely on pairwise correlations between residue positions but correctly capture the higher order statistical properties of the repertoire. By exploiting the interpretation of these models as statistical physics problems, we make several predictions for the collective properties of the sequence ensemble: The distribution of sequences obeys Zipf's law, the repertoire decomposes into several clusters, and there is a massive restriction of diversity because of the correlations. These predictions are completely inconsistent with models in which amino acid substitutions are made independently at each site and are in good agreement with the data. Our results suggest that antibody diversity is not limited by the sequences encoded in the genome and may reflect rapid adaptation to antigenic challenges. This approach should be applicable to the study of the global properties of other protein families.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据