4.8 Article

Engineering of an alternative electron transfer path in photosystem II

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1000187107

关键词

cyanobacteria; energy conversion; proinhibition; photosynthesis; protein engineering

资金

  1. Israel Science Foundation BIKURA [1046/06]
  2. Israel Ministry of Science
  3. Technion V.P.R.
  4. Israel-Mexico Energy Research Fund
  5. Phyllis and Joseph Gurwin Fund

向作者/读者索取更多资源

The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multi-step pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor Q(B), is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the Q(A) intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据