4.8 Article

Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1008534107

关键词

anesthesia; cys-loop receptor; ligand-gated ion channel

资金

  1. National Institutes of Health [GM055876]
  2. National Science Foundation through TeraGrid resources provided by the National Institute for Computational Sciences

向作者/读者索取更多资源

An extensive search for isoflurane binding sites in the nicotinic acetylcholine receptor (nAChR) and the proton gated ion channel from Gloebacter violaceus (GLIC) has been carried out based on molecular dynamics (MD) simulations in fully hydrated lipid membrane environments. Isoflurane introduced into the aqueous phase readily partitions into the lipid membrane and the membrane-bound protein. Specifically, isoflurane binds persistently to three classes of sites in the nAChR transmembrane domain: (i) An isoflurane dimer occludes the pore, contacting residues identified by previous mutagenesis studies; analogous behavior is observed in GLIC. (ii) Several nAChR subunit interfaces are also occupied, in a site suggested by photoaffinity labeling and thought to positively modulate the receptor; these sites are not occupied in GLIC. (iii) Isoflurane binds to the subunit centers of both nAChR a chains and one of the GLIC chains, in a site that has had little experimental targeting. Interpreted in the context of existing structural and physiological data, the present MD results support a multisite model for the mechanism of receptor-channel modulation by anesthetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据