4.8 Article

Ubiquitin not only serves as a tag but also assists degradation by inducing protein unfolding

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912335107

关键词

coarse-grained simulations; posttranslational modifications; protein degradation; protein folding; ubiquitination

资金

  1. Kimmelman Center for Macromolecular Assemblies
  2. Israel Science Foundation

向作者/读者索取更多资源

Protein ubiquitination controls the cellular fate of numerous eukaryotic proteins. Despite its importance, many fundamental questions remain regarding its mechanism. One such question is how ubiquitination alters the biophysical properties of the modified protein and whether these alterations are significant in the cellular context. In this study, we investigate the effects of ubiquitination on the folding thermodynamics and mechanism of various substrates using computational tools and find that ubiquitination changes the thermal stability of modified proteins in a manner relevant to cellular processes. These changes depend on the substrate modification site and on the type of ubiquitination. Ubiquitination of the substrate Ubc7 at the residues that are modified in vivo prior to proteasomal degradation uniquely results in significant thermal destabilization and a local unwinding near the modification site, which indicates that ubiquitination possibly facilitates the unfolding process and improves substrate degradation efficiency. With respect to the substrate p19(4inkd), our results support a synergetic effect of ubiquitination and phosphorylation on the degradation process via enhanced thermal destabilization. Our study implies that, in addition to its known role as a recognition signal, the ubiquitin attachment may be directly involved in the cellular process it regulates by changing the biophysical properties of the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据