4.8 Article

Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1005854107

关键词

regulation; molecular motor; fluorescence anisotropy

资金

  1. National Institutes of Health [GM072656]

向作者/读者索取更多资源

Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head-and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据