4.8 Article

An atomistic picture of the regeneration process in dye sensitized solar cells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0913277107

关键词

density functional theory; molecular dynamics simulations; photovoltaics; solid/liquid interfaces; statistical mechanics

资金

  1. Swiss National Science Foundation [200020-111895]
  2. Swiss National Supercomputer Center for computer resources

向作者/读者索取更多资源

A highly efficient mechanism for the regeneration of the cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) sensitizing dye (N3) by I- in acetonitrile has been identified by using molecular dynamics simulation based on density functional theory. Barrier-free complex formation of the oxidized dye with both I- and I-2(-), and facile dissociation of I-2(-) and I-3(-) from the reduced dye are key steps in this process. In situ vibrational spectroscopy confirms the reversible binding of I-2 to the thiocyanate group. Additionally, simulations of the electrolyte near the interface suggest that acetonitrile is able to cover the (101) surface of anatase with a passivating layer that inhibits direct contact of the redox mediator with the oxide, and that the solvent structure specifically enhances the concentration of I- at a distance which further favors rapid dye regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据