4.8 Article

Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1008213107

关键词

solid-state NMR; line shape analysis; spin-lattice relaxation; molecular design; crystal engineering

向作者/读者索取更多资源

Rotary biomolecular machines rely on highly symmetric supramolecular structures with rotating units that operate within a densely packed frame of reference, stator, embedded within relatively rigid membranes. The most notable examples are the enzyme FoF1 ATP synthase and the bacterial flagellum, which undergo rotation in steps determined by the symmetries of their rotators and rotating units. Speculating that a precise control of rotational dynamics in rigid environments will be essential for the development of artificial molecular machines, we analyzed the relation between rotational symmetry order and equilibrium rotational dynamics in a set of crystalline molecular gyroscopes with rotators having axial symmetry that ranges from two- to fivefold. The site exchange frequency for these molecules in their closely related crystals at ambient temperature varies by several orders of magnitude, up to ca. 4.46 x 10(8) s(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据