4.8 Article

Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912748107

关键词

genetic accommodation; genetic assimilation; gene expression; pigmentation; rapid evolution

资金

  1. National Science Foundation [DEB-021212487]
  2. National Institutes of Health [GM07827401A1, GM063651]

向作者/读者索取更多资源

A central role for phenotypic plasticity in adaptive evolution is often posited yet lacks empirical support. Selection for the stable production of an induced phenotype is hypothesized to modify the regulation of preexisting developmental pathways, producing rapid adaptive change. We examined the role of plasticity in rapid adaptation of the zooplankton Daphnia melanica to novel fish predators. Here we show that plastic up-regulation of the arthropod melanin gene dopa decarboxylase (Ddc) in the absence of UV radiation is associated with reduced pigmentation in D. melanica. Daphnia populations coexisting with recently introduced fish exhibit environmentally invariant up-regulation of Ddc, accompanied by constitutive up-regulation of the interacting arthropod melanin gene ebony. Both changes in regulation are associated with adaptive reduction in the plasticity and mean expression of melanin. Our results provide evidence that the developmental mechanism underlying ancestral plasticity in response to an environmental factor has been repeatedly co-opted to facilitate rapid adaptation to an introduced predator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据