4.8 Article

Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912103107

关键词

polysialic acid; NG2 cells; glycosylation; polysialyltransferases; glycoproteomics

资金

  1. Deutsche Forschungsgemeinschaft [Ge 527/3, MU 1774/3, SFB 535]

向作者/读者索取更多资源

Among the large set of cell surface glycan structures, the carbohydrate polymer polysialic acid (polySia) plays an important role in vertebrate brain development and synaptic plasticity. The main carrier of polySia in the nervous system is the neural cell adhesion molecule NCAM. As polySia with chain lengths of more than 40 sialic acid residues was still observed in brain of newborn Ncam(-/-) mice, we performed a glycoproteomics approach to identify the underlying protein scaffolds. Affinity purification of polysialylated molecules from Ncam(-/-) brain followed by peptide mass. ngerprinting led to the identification of the synaptic cell adhesion molecule SynCAM1 as a so far unknown polySia carrier. SynCAM1 belongs to the Ig superfamily and is a powerful inducer of synapse formation. Importantly, the appearance of polysialylated SynCAM 1 was not restricted to the Ncam-/- background but was found to the same extent in perinatal brain of WT mice. PolySia was located on N-glycans of the first Ig domain, which is known to be involved in homo- and heterophilic SynCAM 1 interactions. Both polysialyltransferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1 in vitro, and polysialylation of SynCAM 1 completely abolished homophilic binding. Analysis of serial sections of perinatal Ncam(-/-) brain revealed that polySia-SynCAM 1 is expressed exclusively by NG2 cells, a multifunctional glia population that can receive glutamatergic input via unique neuron-NG2 cell synapses. Our findings suggest that polySia may act as a dynamic modulator of SynCAM 1 functions during integration of NG2 cells into neural networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据