4.8 Article

Mixed-power scaling of whole-plant respiration from seedlings to giant trees

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0902554107

关键词

allometry; metabolic scaling; mixed-power function; whole-plant respiration; simple-power function

资金

  1. Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT) [18380098]
  2. Japan Ministry of Environment [B-2]
  3. Japan Forestry and Forest Products Research Institute [200608]
  4. Grants-in-Aid for Scientific Research [18380098] Funding Source: KAKEN

向作者/读者索取更多资源

The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439: 457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276: 122 - 126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据