4.8 Article

Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1005144107

关键词

diabetes mellitus complications; kinins

资金

  1. National Institutes of Health [DK76160, DK76131]
  2. University of North Carolina Nutrition Obesity Research Center [HL49277, DK56350]
  3. University of North Carolina Center for Gastrointestinal Biology and Diseases [DK34987]
  4. Juvenile Diabetes Research Foundation International [2006-2-106]

向作者/读者索取更多资源

An insertion polymorphism of the angiotensin-I converting enzyme gene (ACE) is common in humans and the higher expressing allele is associated with an increased risk of diabetic complications. The ACE polymorphism does not significantly affect blood pressure or angiotensin II levels, suggesting that the kallikrein-kinin system partly mediates the effects of the polymorphism. We have therefore explored the influence of lack of both bradykinin receptors (B1R and B2R) on diabetic nephropathy, neuropathy, and osteopathy in male mice heterozygous for the Akita diabetogenic mutation in the insulin 2 gene (Ins2). We find that all of the detrimental phenotypes observed in Akita diabetes are enhanced by lack of both B1R and B2R, including urinary albumin excretion, glomerulosclerosis, glomerular basement membrane thickening, mitochondrial DNA deletions, reduction of nerve conduction velocities and of heat sensation, and bone mineral loss. Absence of the bradykinin receptors also enhances the diabetes-associated increases in plasma thiobarbituric acid-reactive substances, mitochondrial DNA deletions, and renal expression of. brogenic genes, including transforming growth factor beta1, connective tissue growth factor, and endothelin-1. Thus, lack of B1R and B2R exacerbates diabetic complications. The enhanced renal injury in diabetic mice caused by lack of B1R and B2R may be mediated by a combination of increases in oxidative stress, mitochondrial DNA damage and over expression of. brogenic genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据