4.8 Article

Revising the nitrogen cycle in the Peruvian oxygen minimum zone

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0812444106

关键词

anammox; dissimilatory nitrate reduction to ammonium; nitrogen loss; functional gene expression; remineralization

向作者/读者索取更多资源

The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineralization in these waters. Without detectable denitrification, it is unclear how NH4+ is remineralized from organic matter and sustains anammox or how secondary NO2- maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO2- from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimilatory nitrate reduction to ammonium was detected in an openocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH4+ requirement for anammox. The remaining NH4+ came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO3- accounted for only approximate to 50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据