4.8 Article

Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0903035106

关键词

angiogenesis; brain metastasis; integrin activation; 4E-BP1

资金

  1. National Institutes of Health [CA095458, CA112287]
  2. CBCRP [12NB0176, 13NB0180]
  3. UCSD NNC
  4. SG Komen
  5. Swedish Government

向作者/读者索取更多资源

The incidence of brain metastasis is rising and poses a severe clinical problem, as we lack effective therapies and knowledge of mechanisms that control metastatic growth in the brain. Here we demonstrate a crucial role for high-affinity tumor cell integrin alpha(v)beta(3) in brain metastatic growth and recruitment of blood vessels. Although alpha(v)beta(3) is frequently up-regulated in primary brain tumors and metastatic lesions of brain homing cancers, we show that it is the alpha(v)beta(3) activation state that is critical for brain lesion growth. Activated, but not non-activated, tumor cell alpha(v)beta(3) supports efficient brain metastatic growth through continuous up-regulation of vascular endothelial growth factor (VEGF) protein under normoxic conditions. In metastatic brain lesions carrying activated alpha(v)beta(3), VEGF expression is controlled at the post-transcriptional level and involves phosphorylation and inhibition of translational respressor 4E-binding protein (4E-BP1). In contrast, tumor cells with non-activated alpha(v)beta(3) depend on hypoxia for VEGF induction, resulting in reduced angiogenesis, tumor cell apoptosis, and inefficient intracranial growth. Importantly, the microenvironment critically influences the effects that activated tumor cell alpha(v)beta(3) exerts on tumor cell growth. Although it strongly promoted intracranial growth, the activation state of the receptor did not influence tumor growth in the mammary fat pad as a primary site. Thus, we identified a mechanism by which metastatic cells thrive in the brain microenvironment and use the high-affinity form of an adhesion receptor to grow and secure host support for proliferation. Targeting this molecular mechanism could prove valuable for the inhibition of brain metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据