4.8 Article

Stability of muscle synergies for voluntary actions after cortical stroke in humans

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0910114106

关键词

motor control; motor modules; neurorehabilitation; motor primitives; electromyography

资金

  1. McGovern Institute for Brain Research
  2. Massachusetts Institute of Technology
  3. Italian Ministry of Health [ART56-NMC-704763]

向作者/读者索取更多资源

Production of voluntary movements relies critically on the functional integration of several motor cortical areas, such as the primary motor cortex, and the spinal circuitries. Surprisingly, after almost 40 years of research, how the motor cortices specify descending neural signals destined for the downstream interneurons and motoneurons has remained elusive. In light of the many recent experimental demonstrations that the motor system may coordinate muscle activations through a linear combination of muscle synergies, we hypothesize that the motor cortices may function to select and activate fixed muscle synergies specified by the spinal or brainstem networks. To test this hypothesis, we recorded electromyograms (EMGs) from 12-16 upper arm and shoulder muscles from both the unaffected and the stroke-affected arms of stroke patients having moderate-to-severe unilateral ischemic lesions in the frontal motor cortical areas. Analyses of EMGs using a nonnegative matrix factorization algorithm revealed that in seven of eight patients the muscular compositions of the synergies for both the unaffected and the affected arms were strikingly similar to each other despite differences in motor performance between the arms, and differences in cerebral lesion sizes and locations between patients. This robustness of muscle synergies that we observed supports the notion that descending cortical signals represent neuronal drives that select, activate, and flexibly combine muscle synergies specified by networks in the spinal cord and/or brainstem. Our conclusion also suggests an approach to stroke rehabilitation by focusing on those synergies with altered activations after stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据