4.8 Article

Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0811119106

关键词

T cell; thymus; galactosylceramide; bone marrow

资金

  1. Juvenile Diabetes Research Foundation International [1-2005-039, 5-2006-918, 5-2006-403]
  2. American Diabetes Association [7-05-JF-30]

向作者/读者索取更多资源

MicroRNAs (miRNAs) are a class of evolutionarily conserved small noncoding RNAs that are increasingly being recognized as important regulators of gene expression. The ribonuclease III enzyme Dicer is essential for the processing of miRNAs. CD1d-restricted invariant natural killer T (iNKT) cells are potent regulators of diverse immune responses. The role of Dicer-generated miRNAs in the development and function of immune regulatory iNKT cells is unknown. Here, we generated a mouse strain with a tissue-specific disruption of Dicer, and showed that lack of miRNAs after the deletion of Dicer by Tie2-Cre (expressed in hematopoietic cells and endothelial cells) interrupted the development and maturation of iNKT cells in the thymus and significantly decreased the number of iNKT cells in different immune organs. Thymic and peripheral iNKT cell compartments were changed in miRNA-deficient mice, with a significantly increased frequency of CD4(+)CD8(+) iNKT cells in the thymus and a significantly decreased frequency of CD4(+) iNKT cells in the spleen. MiRNA-deficient iNKT cells display profound defects in alpha-GalCer-induced activation and cytokine production. Bone marrow (BM) from miRNA-deficient mice poorly reconstituted iNKT cells compared to BM from WT mice. Also, using a thymic iNKT cell transfer model, we found that iNKT cell homeostasis was impaired in miRNA-deficient recipient mice. Our data indicate that miRNAs expressed in hematopoietic cells and endothelial cells are potent regulators of iNKT cell development, function, and homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据