4.8 Article Proceedings Paper

Size, shape, and the thermal niche of endotherms

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0907321106

关键词

biophysical ecology; functional traits; lower critical temperature; metabolic scaling; thermoneutral zone

向作者/读者索取更多资源

A key challenge in ecology is to define species' niches on the basis of functional traits. Size and shape are important determinants of a species' niche but their causal role is often difficult to interpret. For endotherms, size and shape define the thermal niche through their interaction with core temperature, insulation, and environmental conditions, determining the thermoneutral zone (TNZ) where energy and water costs are minimized. Laboratory measures of metabolic rate used to describe TNZs cannot be generalized to infer the capacity for terrestrial animals to find their TNZ in complex natural environments. Here, we derive an analytical model of the thermal niche of an ellipsoid furred endotherm that accurately predicts field and laboratory data. We use the model to illustrate the relative importance of size and shape on the location of the TNZ under different environmental conditions. The interaction between body shape and posture strongly influences the location of the TNZ and the expected scaling of metabolic rate with size at constant temperature. We demonstrate that the latter relationship has a slope of approximately 1/2 rather than the commonly expected surface area/volume scaling of 2/3. We show how such functional traits models can be integrated with spatial environmental datasets to calculate null expectations for body size clines from a thermal perspective, aiding mechanistic interpretation of empirical clines such as Bergmann's Rule. The combination of spatially explicit data with biophysical models of heat exchange provides a powerful means for studying the thermal niches of endotherms across climatic gradients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据