4.8 Article

Whirly proteins maintain plastid genome stability in Arabidopsis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0901710106

关键词

genome maintenance; microhomology; recombination

资金

  1. Natural Science and Engineering Research Council of Canada

向作者/读者索取更多资源

Maintenance of genome stability is essential for the accurate propagation of genetic information and cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively, little is known about how organelle genomes maintain a stable structure. Here, we report that the plastid-localized Whirly ssDNA-binding proteins are required for plastid genome stability in Arabidopsis. We show that a double KO of the genes AtWhy1 and AtWhy3 leads to the appearance of plants with variegated green/white/yellow leaves, symptomatic of nonfunctional chloroplasts. This variegation is maternally inherited, indicating defects in the plastid genome. Indeed, in all variegated lines examined, reorganized regions of plastid DNA are amplified as circular and/or head-tail concatemers. All amplified regions are delimited by short direct repeats of 10-18 bp, strongly suggesting that these regions result from illegitimate recombination between repeated sequences. This type of recombination occurs frequently in plants lacking both Whirlies, to a lesser extent in single KO plants and rarely in WT individuals. Maize mutants for the ZmWhy1 Whirly protein also show an increase in the frequency of illegitimate recombination. We propose a model where Whirlies contribute to plastid genome stability by protecting against illegitimate repeat-mediated recombination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据