4.8 Article

S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0810595106

关键词

nitric oxide; apoptosis; neurodegeneration; inhibitors of apoptosis

资金

  1. Area of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region [HKUST6435/06M, HIA05/06.SC04, AoE/B-15/01]
  2. National Institutes of Health/National Institute of Neurological Disorders
  3. Stroke Morris K. Udall Parkinson's Disease Research Center of Excellence [NS38377]

向作者/读者索取更多资源

Inhibitors of apoptosis (IAPs) are a family of highly-conserved proteins that regulate cell survival through binding to caspases, the final executioners of apoptosis. X-linked IAP (XIAP) is the most widely expressed IAP and plays an important function in regulating cell survival. XIAP contains 3 baculoviral IAP repeats (BIRs) followed by a RING finger domain at the C terminal. The BIR domains of XIAP possess anticaspase activities, whereas the RING finger domain enables XIAP to function as an E3 ubiquitin ligase in the ubiquitin and proteasomal system. Our previous study showed that parkin, a protein that is important for the survival of dopaminergic neurons in Parkinson's disease (PD), is S-nitrosylated both in vitro and in vivo in PD patients. S-nitrosylation of parkin compromises its ubiquitin E3 ligase activity and its protective function, which suggests that nitrosative stress is an important factor in regulating neuronal survival during the pathogenesis of PD. In this study we show that XIAP is S-nitrosylated in vitro and in vivo in an animal model of PD and in PD patients. Nitric oxide modifies mainly cysteine residues within the BIR domains. In contrast to parkin, S-nitrosylation of XIAP does not affect its E3 ligase activity, but instead directly compromises its anticaspase-3 and antiapoptotic function. Our results confirm that nitrosative stress contributes to PD pathogenesis through the impairment of prosurvival proteins such as parkin and XIAP through different mechanisms, indicating that abnormal S-nitrosylation plays an important role in the process of neurodegeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据