4.8 Article

Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0907262106

关键词

D. radiodurans; nitric oxide synthase; UV radiation

向作者/读者索取更多资源

Deinococcus radiodurans (Dr) withstands desiccation, reactive oxygen species, and doses of radiation that would be lethal to most organisms. Deletion of a gene encoding a homolog of mammalian nitric oxide synthase (NOS) severely compromises the recovery of Dr from ultraviolet (UV) radiation damage. The Delta nos defect can be complemented with recombinant NOS, rescued by exogenous nitric oxide (NO) and mimicked in the wild-type strain with an NO scavenging compound. UV radiation induces both upregulation of the nos gene and cellular NO production on similar time scales. Growth recovery does not depend on NO being present during UV irradiation, but rather can be manifested by NO addition hours after exposure. Surprisingly, nos deletion does not increase sensitivity to oxidative damage, and hydrogen peroxide does not induce nos expression. However, NOS-derived NO upregulates transcription of obgE, a gene involved in bacterial growth proliferation and stress response. Overexpression of the ObgE GTPase in the Delta nos background substantially alleviates the growth defect after radiation damage. Thus, NO acts as a signal for the transcriptional regulation of growth in D. radiodurans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据