4.8 Article

Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0809666106

关键词

photocatalysis; self-assembly; supramolecular chemistry; metalloporphyrin chromophore; Stern-Volmer plot

资金

  1. The Netherlands Research School Combination Catalysis

向作者/读者索取更多资源

The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe-2(mu-pdt)(CO)(4){PPh2(4-py)}(2)] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据