4.8 Article

Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0906891106

关键词

autoimmunity; demyelination; lipid mediator; mass spectrometry; T(h)17

资金

  1. Ministry of Education, Science, Culture, Sports, and Technology of Japan
  2. Health and Labor Sciences Research Grants for the Comprehensive Research on Aging and Health
  3. Ministry of Health, Labor and Welfare of Japan
  4. Kato Memorial Trust
  5. Japanese Society for the Promotion of Science
  6. Grants-in-Aid for Scientific Research [19002011] Funding Source: KAKEN

向作者/读者索取更多资源

The arachidonic acid (AA) cascade produces eicosanoids, such as prostaglandins (PGs), that regulate physiological and pathological functions. Although various nonsteroidal anti-inflammatory drugs have been developed, blocking upstream components (cyclooxygenase-1 and -2) of the AA cascade leads to severe side effects, including gastrointestinal ulcers and cardiovascular events, respectively, due to the complexity of the AA cascade. Here, using an AA cascade-targeted lipidomics approach, we report that microsomal PGE synthase 1 (mPGES-1) plays a key role in experimental autoimmune encephalomyelitis (EAE). Eicosanoids (mainly PGD(2)) are produced constitutively in the spinal cord of naive mice. However, in EAE lesions, the PGE(2) pathway is favored and the PGD(2), PGI(2), and 5-lipoxygenase pathways are attenuated. Furthermore, mPGES-1(-/-) mice showed less severe symptoms of EAE and lower production of IL-17 and IFN-gamma than mPGES-1(+/+) mice. Expression of PGE(2) receptors (EP1, EP2, and EP4) was elevated in EAE lesions and correlated with clinical symptoms. Immunohistochemistry on central nervous systems of EAE mice and multiple sclerosis (MS) patients revealed overt expression of mPGES-1 protein in microglia/macrophages. Thus, the mPGES-1-PGE(2)-EPs axis of the AA cascade may exacerbate EAE pathology. Our findings have important implications for the design of therapies for MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据