4.8 Article

Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0905432106

关键词

biodegradable polymers; ischemia; nonviral gene delivery

资金

  1. Canadian Institutes of Health Research
  2. Fonds de Recherche en Sante du Quebec

向作者/读者索取更多资源

Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem cells for the purposes of promoting angiogenesis. Nonviral, biodegradable polymeric nanoparticles were developed to deliver hVEGF gene to human mesenchymal stem cells (hMSCs) and human embryonic stem cell-derived cells (hESdCs). Treated stem cells demonstrated markedly enhanced hVEGF production, cell viability, and engraftment into target tissues. S. c. implantation of scaffolds seeded with VEGF-expressing stem cells (hMSCs and hESdCs) led to 2- to 4-fold-higher vessel densities 2 weeks after implantation, compared with control cells or cells transfected with VEGF by using Lipofectamine 2000, a leading commercial reagent. Four weeks after intramuscular injection into mouse ischemic hindlimbs, genetically modified hMSCs substantially enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis. These results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据