4.8 Article

On the remarkable mechanostability of scaffoldins and the mechanical clamp motif

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0813093106

关键词

cellulosome; cohesin; mechanical stability; protein nanomechanics; single-molecule force spectroscopy

资金

  1. Ministerio de Ciencia e Innovacion [BIO2007-67116, BFU2006-10288]
  2. Consejer a de Educacion de la Comunidad de Madrid [0505/MAT/0283, S-BIO-0260]
  3. Consejo Superior de Investigaciones Cientficas [200620F00]
  4. Ministry of Science and Higher Education [N N202 0852 33]
  5. European Union within European Regional Development Fund [01.01.02-00-008/08]

向作者/读者索取更多资源

Protein mechanostability is a fundamental biological property that can only be measured by single-molecule manipulation techniques. Such studies have unveiled a variety of highly mechanostable modules (mainly of the Ig-like, beta-sandwich type) in modular proteins subjected to mechanical stress from the cytoskeleton and the metazoan cell-cell interface. Their mechanostability is often attributed to a mechanical clamp of secondary structure (a patch of backbone hydrogen bonds) fastening their ends. Here we investigate the nanomechanics of scaffoldins, an important family of scaffolding proteins that assembles a variety of cellulases into the so-called cellulosome, a microbial extracellular nanomachine for cellulose adhesion and degradation. These proteins anchor the microbial cell to cellulose substrates, which makes their connecting region likely to be subjected to mechanical stress. By using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and computer simulations, here we show that the cohesin I modules from the connecting region of cellulosome scaffoldins are the most robust mechanical proteins studied experimentally or predicted from the entire Protein Data Bank. The mechanostability of the cohesin modules studied correlates well with their mechanical kinetic stability but not with their thermal stability, and it is well predicted by computer simulations, even coarse-grained. This extraordinary mechanical stability is attributed to 2 mechanical clamps in tandem. Our findings provide the current upper limit of protein mechanostability and establish shear mechanical clamps as a general structural/functional motif widespread in proteins putatively subjected to mechanical stress. These data have important implications for the scaffoldin physiology and for protein design in biotechnology and nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据