4.8 Article

Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0903052106

关键词

adhesion; membrane deformation; small unilamellar lipid vesicles; membrane tension

资金

  1. European Union [FP6-2004-IST-4]

向作者/读者索取更多资源

Nanometer-scale intermembrane contact areas (CAs) formed between single small unilamellar lipid vesicles (SUVs) and planar supported lipid bilayers are quantified by measuring fluorescence resonance energy transfer (FRET) between a homogenous layer of donor fluorophores labeling the supported bilayer and acceptor fluorophores labeling the SUVs. The smallest CAs detected in our setup between biotinylated SUVs and dense monolayers of streptavidin were approximate to 20 nm in radius. Deformation of SUVs is revealed by comparing the quenching of the donors to calculations of FRET between a perfectly spherical shell and a flat surface containing complementary fluorophores. These results confirmed the theoretical prediction that the degree of deformation scales with the SUV diameter. The size of the CA can be controlled experimentally by conjugating polyethylene glycol polymers to the SUV or the surface and thereby modulating the interfacial energy of adhesion. In this manner, we could achieve secure immobilization of SUVs under conditions of minimal deformation. Finally, we demonstrate that kinetic measurements of CA, at constant adhesion, can be used to record in real-time quantitative changes in the bilayer tension of a nano-scale lipid membrane system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据