4.8 Article

Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0911748107

关键词

cervicovaginal tract; herpes simplex virus; hydrophobic interactions; microstructure; particle tracking

资金

  1. National Institutes of Health [5U01AI066726, R21HL089816, R01EB00355]
  2. National Science Foundation

向作者/读者索取更多资源

The mechanisms by which mucus helps prevent viruses from infecting mucosal surfaces are not well understood. We engineered non-mucoadhesive nanoparticles of various sizes and used them as probes to determine the spacing between mucin fibers (pore sizes) in fresh undiluted human cervicovaginal mucus (CVM) obtained from volunteers with healthy vaginal microflora. We found that most pores in CVM have diameters significantly larger than human viruses (average pore size 340 +/- 70 nm; range approximately 50-1800 nm). This mesh structure is substantially more open than the 15-100-nm spacing expected assuming mucus consists primarily of a random array of individual mucin fibers. Addition of a nonionic detergent to CVM caused the average pore size to decrease to 130 +/- 50 nm. This suggests hydrophobic interactions between lipid-coated naked protein regions on mucins normally cause mucin fibers to self-condense and/or bundle with other fibers, creating mucin cables at least three times thicker than individual mucin fibers. Although the native mesh structure is not tight enough to trap most viruses, we found that herpes simplex virus (approximately 180 nm) was strongly trapped in CVM, moving at least 8,000-fold slower than non-mucoadhesive 200-nm nanoparticles. This work provides an accurate measurement of the pore structure of fresh, hydrated ex vivo CVM and demonstrates that mucoadhesion, rather than steric obstruction, may be a critical protective mechanism against a major sexually transmitted virus and perhaps other viruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据