4.8 Article

Quantifying cellular traction forces in three dimensions

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0904565106

关键词

digital volume correlation; laser scanning confocal microscopy; three-dimensional

资金

  1. National Science Foundation
  2. National Institutes of Health

向作者/读者索取更多资源

Cells engage in mechanical force exchange with their extracellular environment through tension generated by the cytoskeleton. A method combining laser scanning confocal microscopy (LSCM) and digital volume correlation (DVC) enables tracking and quantification of cell-mediated deformation of the extracellular matrix in all three spatial dimensions. Time-lapse confocal imaging of migrating 3T3 fibroblasts on fibronectin (FN)-modified polyacrylamide gels of varying thickness reveals significant in-plane (x, y) and normal (z) displacements, and illustrates the extent to which cells, even in nominally two-dimensional (2-D) environments, explore their surroundings in all three dimensions. The magnitudes of the measured displacements are independent of the elastic moduli of the gels. Analysis of the normal displacement profiles suggests that normal forces play important roles even in 2-D cell migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据