4.8 Article

Computational structure-based redesign of enzyme activity

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0900266106

关键词

biophysical algorithms; gramicidin S synthetase; nonribosomal peptide synthetase; protein design

资金

  1. National Institutes of Health [R01 GM-78031]

向作者/读者索取更多资源

We report a computational, structure-based redesign of the phenylalanine adenylation domain of the nonribosomal peptide synthetase enzyme gramicidin S synthetase A (GrsA-PheA) for a set of noncognate substrates for which the wild-type enzyme has little or virtually no specificity. Experimental validation of a set of top-ranked computationally predicted enzyme mutants shows significant improvement in the specificity for the target substrates. We further present enhancements to the methodology for computational enzyme redesign that are experimentally shown to result in significant additional improvements in the target substrate specificity. The mutant with the highest activity for a noncognate substrate exhibits 1/6 of the wild-type enzyme/wild-type substrate activity, further confirming the feasibility of our computational approach. Our results suggest that structure-based protein design can identify active mutants different from those selected by evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据