4.8 Article

Peroxisome-associated matrix protein degradation in Arabidopsis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0811329106

关键词

Arabidopsis thaliana; organelle remodeling; peroxisome; protein turnover

资金

  1. National Science Foundation [IOS-0315596, MCB-0745122]
  2. Robert A. Welch Foundation [C-1309, USDA 2008-20659]
  3. Direct For Biological Sciences
  4. Div Of Molecular and Cellular Bioscience [0745122] Funding Source: National Science Foundation

向作者/读者索取更多资源

Peroxisomes are ubiquitous eukaryotic organelles housing diverse enzymatic reactions, including several that produce toxic reactive oxygen species. Although understanding of the mechanisms whereby enzymes enter peroxisomes with the help of peroxin (PEX) proteins is increasing, mechanisms by which damaged or obsolete peroxisomal proteins are degraded are not understood. We have exploited unique aspects of plant development to characterize peroxisome-associated protein degradation (PexAD) in Arabidopsis. Oil-seed seedlings undergo a developmentally regulated remodeling of peroxisomal matrix protein composition in which the glyoxylate cycle enzymes isocitrate lyase (ICL) and malate synthase (MLS) are replaced by photorespiration enzymes. We found that mutations expected to increase or decrease peroxisomal H2O2 levels accelerated or delayed ICL and MLS disappearance, respectively, suggesting that oxidative damage promotes peroxisomal protein degradation. ICL, MLS, and the beta-oxidation enzyme thiolase were stabilized in the pex4-1 pex22-1 double mutant, which is defective in a peroxisome-associated ubiquitin-conjugating enzyme and its membrane tether. Moreover, the stabilized ICL, thiolase, and an ICL-GFP reporter remained peroxisome associated in pex4-1 pex22-1. ICL also was stabilized and peroxisome associated in pex6-1, a mutant defective in a peroxisome-tethered ATPase. ICL and thiolase were mislocalized to the cytosol but only ICL was stabilized in pex5-10, a mutant defective in a matrix protein import receptor, suggesting that peroxisome entry is necessary for degradation of certain matrix proteins. Together, our data reveal new roles for PEX4, PEX5, PEX6, and PEX22 in PexAD of damaged or obsolete matrix proteins in addition to their canonical roles in peroxisome biogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据