4.8 Article

Kernel energy method applied to vesicular stomatitis virus nucleoprotein

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0811959106

关键词

Hartree-Fock; KEM; Moller-Plesset; quantum mechanics

资金

  1. National Institutes of Health [RR-03037]
  2. National Center for Research Resources

向作者/读者索取更多资源

The kernel energy method (KEM) is applied to the vesicular stomatitis virus (VSV) nucleoprotein (PDB ID code 2QVJ). The calculations employ atomic coordinates from the crystal structure at 2.8-angstrom resolution, except for the hydrogen atoms, whose positions were modeled by using the computer program HYPERCHEM. The calculated KEM ab initio limited basis Hartree-Fock energy for the full 33,175 atom molecule (including hydrogen atoms) is obtained. In the KEM, a full biological molecule is represented by smaller kernels'' of atoms, greatly simplifying the calculations. Collections of kernels are well suited for parallel computation. VSV consists of five similar chains, and we obtain the energy of each chain. Interchain hydrogen bonds contribute to the interaction energy between the chains. These hydrogen bond energies are calculated in Hartree-Fock (HF) and Moller-Plesset perturbation theory to second order (MP2) approximations by using 6-31G** basis orbitals. The correlation energy, included in MP2, is a significant factor in the interchain hydrogen bond energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据