4.8 Article

Remarkable resilience of teeth

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0902466106

关键词

dental enamel; evolutionary biology; fracture; microstructure; tufts

资金

  1. Washington University Research Enhancement Fund
  2. Division Of Behavioral and Cognitive Sci
  3. Direct For Social, Behav & Economic Scie [1118385] Funding Source: National Science Foundation

向作者/读者索取更多资源

Tooth enamel is inherently weak, with fracture toughness comparable with glass, yet it is remarkably resilient, surviving millions of functional contacts over a lifetime. We propose a microstructural mechanism of damage resistance, based on observations from ex situ loading of human and sea otter molars (teeth with strikingly similar structural features). Section views of the enamel implicate tufts, hypomineralized crack-like defects at the enamel-dentin junction, as primary fracture sources. We report a stabilization in the evolution of these defects, by stress shielding'' from neighbors, by inhibition of ensuing crack extension from prism interweaving (decussation), and by self-healing. These factors, coupled with the capacity of the tooth configuration to limit the generation of tensile stresses in largely compressive biting, explain how teeth may absorb considerable damage over time without catastrophic failure, an outcome with strong implications concerning the adaptation of animal species to diet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据