4.8 Article

Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0901783106

关键词

adhesion; molecular recognition; pathogen selectivity; multivalent receptors

资金

  1. Reid T. Milner Professorship
  2. Wellcome Trust [075565]

向作者/读者索取更多资源

The dendritic cell receptor DC-SIGN mediates pathogen recognition by binding to glycans characteristic of pathogen surfaces, including those found on HIV. Clustering of carbohydrate-binding sites in the receptor tetramer is believed to be critical for targeting of pathogen glycans, but the arrangement of these sites remains poorly understood. Surface force measurements between apposed lipid bilayers displaying the extracellular domain of DC-SIGN and a neoglycolipid bearing an oligosaccharide ligand provide evidence that the receptor is in an extended conformation and that glycan docking is associated with a conformational change that repositions the carbohydrate-recognition domains during ligand binding. The results further show that the lateral mobility of membrane-bound ligands enhances the engagement of multiple carbohydrate-recognition domains in the receptor oligomer with appropriately spaced ligands. These studies highlight differences between pathogen targeting by DC-SIGN and receptors in which binding sites at fixed spacing bind to simple molecular patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据