4.8 Article

Predicting weakly stable regions, oligomerization state, and protein-protein interfaces in transmembrane domains of outer membrane proteins

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0902169106

关键词

in-plug; membrane protein oligomerization; out-clamp; protein-protein interaction; weakly stable TM strand

资金

  1. NIGMS NIH HHS [R01 GM081682, GM081682, GM079804-01A1, R01 GM079804] Funding Source: Medline

向作者/读者索取更多资源

Although the structures of many beta-barrel membrane proteins are available, our knowledge of the principles that govern their energetics and oligomerization states is incomplete. Here we describe a computational method to study the transmembrane (TM) domains of beta-barrel membrane proteins. Our method is based on a physical interaction model, a simplified conformational space for efficient enumeration, and an empirical potential function from a detailed combinatorial analysis. Using this method, we can identify weakly stable regions in the TM domain, which are found to be important structural determinants for beta-barrel membrane proteins. By calculating the melting temperatures of the TM strands, our method can also assess the stability of beta-barrel membrane proteins. Predictions on membrane enzyme PagP are consistent with recent experimental NMR and mutant studies. We have also discovered that out-clamps, in-plugs, and oligomerization are 3 general mechanisms for stabilizing weakly stable TM regions. In addition, we have found that extended and contiguous weakly stable regions often signal the existence of an oligomer and that strands located in the interfaces of protein-protein interactions are considerably less stable. Based on these observations, we can predict oligomerization states and can identify the interfaces of protein-protein interactions for beta-barrel membrane proteins by using either structure or sequence information. In a set of 25 nonhomologous proteins with known structures, our method successfully predicted whether a protein forms a monomer or an oligomer with 91% accuracy; in addition, our method identified with 82% accuracy the protein-protein interaction interfaces by using sequence information only when correct strands are given.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据