4.8 Article

FK506-binding protein (FKBP) partitions a modified HIV protease inhibitor into blood cells and prolongs its lifetime in vivo

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0805375106

关键词

AIDS; bifunctional molecules; chemical inducers of dimerization; pharmacology; prodrugs

资金

  1. University of Michigan
  2. ThermoFisher Scientific

向作者/读者索取更多资源

HIV protease inhibitors are a key component of anti-retroviral therapy, but their susceptibility to cytochrome P450 metabolism reduces their systemic availability and necessitates repetitive dosing. Importantly, failure to maintain adequate inhibitor levels is believed to provide an opportunity for resistance to emerge; thus, new strategies to prolong the lifetime of these drugs are needed. Toward this goal, numerous prodrug approaches have been developed, but these methods involve creating inactive precursors that require enzymatic processing. Using an alternative strategy inspired by the natural product FK506, we have synthetically modified an HIV protease inhibitor such that it acquires high affinity for the abundant, cytoplasmic chaperone, FK506-binding protein (FKBP). This modified protease inhibitor maintains activity against HIV-1 protease (IC50 = 19 nM) and, additionally, it is partitioned into the cellular component of whole blood via binding to FKBP. Interestingly, redistribution into this protected niche reduces metabolism and improves its half-life in mice by almost 20-fold compared with the unmodified compound. Based on these findings, we propose that addition of FKBP-binding groups might partially overcome the poor pharmacokinetic properties of existing HIV protease inhibitors and, potentially, other drug classes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据