4.8 Article

Transcriptome transfer produces a predictable cellular phenotype

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0902161106

关键词

neuron; transcriptome-induced phenotype remodeling; single cell; Waddington

资金

  1. Common wealth of Pennsylvania
  2. National Institute of Health [T32-MH14654]
  3. Department of Energy Fellowship
  4. National Institute of Health Director's Pioneer Award [DP1-OD-04117]
  5. The Keck Foundation

向作者/读者索取更多资源

Cellular phenotype is the conglomerate of multiple cellular processes involving gene and protein expression that result in the elaboration of a cell's particular morphology and function. It has been thought that differentiated postmitotic cells have their genomes hard wired, with little ability for phenotypic plasticity. Here we show that transfer of the transcriptome from differentiated rat astrocytes into a nondividing differentiated rat neuron resulted in the conversion of the neuron into a functional astrocyte-like cell in a time-dependent manner. This single-cell study permits high resolution of molecular and functional components that underlie phenotype identity. The RNA population from astrocytes contains RNAs in the appropriate relative abundances that give rise to regulatory RNAs and translated proteins that enable astrocyte identity. When transferred into the postmitotic neuron, the astrocyte RNA population converts 44% of the neuronal host cells into the destination astrocyte-like phenotype. In support of this observation, quantitative measures of cellular morphology, single-cell PCR, single-cell microarray, and single-cell functional analyses have been performed. The host-cell phenotypic changes develop over many weeks and are persistent. We call this process of RNA-induced phenotype changes, transcriptome-induced phenotype remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据