4.8 Article

Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G1/S transition

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0804177106

关键词

cell cycle; p27; retinoblastoma protein; Skp2

资金

  1. National Institutes of Health, National Cancer Institute, Center for Cancer Research
  2. A* STAR of Singapore

向作者/读者索取更多资源

The G(1)/S-phase transition is a well-toned switch in the mammalian cell cycle. Cdk2, Cdk4, and the rate-limiting tumor suppressor retinoblastoma protein (Rb) have been studied in separate animal models, but interactions between the kinases and Rb in vivo have yet to be investigated. To further dissect the regulation of the G(1) to S-phase progression, we generated Cdk2(-/-)Cdk4(-/-)Rb(-/-) (TKO) mutant mice. TKO mice died at midgestation with major defects in the circulatory systems and displayed combined phenotypes of Rb-/- and Cdk2(-/-)Cdk4(-/-) mutants. However, TKO mouse embryonic fibroblasts were not only resistant to senescence and became immortal but displayed enhanced S-phase entry and proliferation rates similar to wild type. These effects were more remarkable in hypoxic compared with normoxic conditions. Interestingly, depletion of the pocket proteins by HPV-E7 or p107/p130 shRNA in the absence of Cdk2/Cdk4 elicited a mechanism for the G(1)/S regulation with increased levels of p27(Kip1) binding to Cdk1/cyclin E complexes. Our work indicates that the G(1)/S transition can be controlled in different ways depending on the situation, resembling a regulatory network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据