4.8 Article

Dynamic charge interactions create surprising rigidity in the ER/K α-helical protein motif

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0806256105

关键词

MD simulations; protein structure; single-molecule analysis; small-angle x-ray scattering

资金

  1. National Science Foundation [CNS-0619926]
  2. National Institutes of Health [T32 GM008294, PO1 GM066275, GM33289]

向作者/读者索取更多资源

Protein alpha-helices are ubiquitous secondary structural elements, seldom considered to be stable without tertiary contacts. However, amino acid sequences in proteins that are based on alternating repeats of four glutamic acid (E) residues and four positively charged residues, a combination of arginine (R) and lysine (K), have been shown to form stable alpha-helices in a few proteins, in the absence of tertiary interactions. Here, we find that this ER/K motif is more prevalent than previously reported, being represented in proteins of diverse function from archaea to humans. By using molecular dynamics (MD) simulations, we characterize a dynamic pattern of side-chain interactions that extends along the backbone of ER/K alpha-helices. A simplified model predicts that side-chain interactions alone contribute substantial bending rigidity (0.5 pN/ nm) to ER/K alpha-helices. Results of small-angle x-ray scattering (SAXS) and single-molecule optical-trap analyses are consistent with the high bending rigidity predicted by our model. Thus, the ER/K alpha-helix is an isolated secondary structural element that can efficiently span long distances in proteins, making it a promising tool in designing synthetic proteins. We propose that the significant rigidity of the ER/K alpha-helix can help regulate protein function, as a force transducer between protein subdomains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据