4.8 Article

Fluid helium at conditions of giant planetary interiors

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0804609105

关键词

high pressure; metallization; giant planets; gap closure; hybridization

资金

  1. U.S. National Science Foundation
  2. Department of Energy
  3. University of California

向作者/读者索取更多资源

As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s-p hydridization with increasing temperature, and this influences the equation of state: The Gruneisen parameter, which determines the adiabatic temperature-depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据