4.8 Article

A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0807717105

关键词

bacterial pathogenesis; G5 domain; Aap; chelation; Staphylococcus

资金

  1. State of Ohio Eminent Scholar Program
  2. National Institutes of Health
  3. American Heart Association

向作者/读者索取更多资源

Hospital-acquired bacterial infections are an increasingly important cause of morbidity and mortality worldwide. Staphylococcal species are responsible for the majority of hospital-acquired infections, which are often complicated by the ability of staphylococci to grow as biofilms. Biofilm formation by Staphylococcus epidermidis and Staphylococcus aureus requires cell-surface proteins (Aap and SasG) containing sequence repeats known as G5 domains; however, the precise role of these proteins in biofilm formation is unclear. We show here, using analytical ultracentrifugation (AUC) and circular dichroism (CD), that G5 domains from Aap are zinc (Zn2+)-dependent adhesion modules analogous to mammalian cadherin domains. The G5 domain dimerizes in the presence of Zn2+, incorporating 2-3 Zn2+ ions in the dimer interface. Tandem G5 domains associate in a modular fashion, suggesting a zinc zipper'' mechanism for G5 domain-based intercellular adhesion in staphylococcal biofilms. We demonstrate, using a biofilm plate assay, that Zn2+ chelation specifically prevents biofilm formation by S. epidermidis and methicillin-resistant S. aureus (MRSA). Furthermore, individual soluble G5 domains inhibit biofilm formation in a dose-dependent manner. Thus, the complex three-dimensional architecture of staphylococcal biofilms results from the self-association of a single type of protein domain. Surface proteins with tandem G5 domains are also found in other bacterial species, suggesting that this mechanism for intercellular adhesion in biofilms may be conserved among staphylococci and other Gram-positive bacteria. Zn2+ chelation represents a potential therapeutic approach for combating biofilm growth in a wide range of bacterial biofilm-related infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据