4.8 Article

Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0810021105

关键词

nitrogen cycle; climate change; foliar nitrogen; ecosystem-climate feedback; remote sensing

资金

  1. NASA
  2. Harvard Forest
  3. Hubbard Brook
  4. Cedar Creek Long-Term Ecological Research programs
  5. U.S. Department of Agriculture Forest Service Northern Research Station
  6. Northeastern States Research Cooperative
  7. U.S. Department of Energy Office of Science (BER) through the Northeastern Regional Center of the National Institute for Climatic Change Research

向作者/读者索取更多资源

The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据