4.8 Article

Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0711568105

关键词

Alzheimer's disease; cerebral blood flow; tg2576

资金

  1. NINDS NIH HHS [R01 NS037853, NS37853] Funding Source: Medline

向作者/读者索取更多资源

Alterations in cerebrovascular regulation related to vascular oxidative stress have been implicated in the mechanisms of Alzheimer's disease (AD), but their role in the amyloid deposition and cognitive impairment associated with AD remains unclear. We used mice overexpressing the Swedish mutation of the amyloid precursor protein (Tg2576) as a model of AD to examine the role of reactive oxygen species produced by NADPH oxidase in the cerebrovascular alterations, amyloid deposition, and behavioral deficits observed in these mice. We found that 12- to 15-month-old Tg2576 mice lacking the catalytic subunit Nox2 of NADPH oxidase do not develop oxidative stress, cerebrovascular dysfunction, or behavioral deficits. These improvements occurred without reductions in brain amyloid-beta peptide (A beta) levels or amyloid plaques. The findings unveil a previously unrecognized role of Nox2-derived radicals in the behavioral deficits of Tg2576 mice and provide a link between the neurovascular dysfunction and cognitive decline associated with amyloid pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据