4.8 Article

Exploring nuclear motion through conical intersections in the UV photodissociation of phenols and thiophenol

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0800463105

关键词

photofragment translational spectroscopy; nonadiabatic; dissociation dynamics

资金

  1. Engineering and Physical Sciences Research Council
  2. LASER

向作者/读者索取更多资源

High-resolution time-of-flight measurements of H atom products from photolysis of phenol, 4-methylphenol, 4-fluorophenol, and thiophenol, at many UV wavelengths (lambda(phot)), have allowed systematic study of the influence of ring substituents and the heteroatom on the fragmentation dynamics. All dissociate by X-H (X = O, S) bond fission after excitation at their respective S-1(1 pi pi*)-S-0 origins and at all shorter wavelengths. The achieved kinetic energy resolution reveals population of selected vibrational levels of the various phenoxyl and thiophenoxyl coproducts, providing uniquely detailed insights into the fragmentation dynamics. Dissociation in all cases is deduced to involve nuclear motion on the (1)pi sigma* potential energy surface (PES). The route to accessing this PES, and the subsequent dynamics, is seen to be very sensitive to lambda(phot) and substitution of the heteroatom. In the case of the phenols, dissociation after excitation at long lambda(phot) is rationalized in terms of radiationless transfer from S-1 to S-0 levels carrying sufficient O-H stretch vibrational energy to allow coupling via the conical intersection between the So and 1 pi sigma* PESs at longer O-H bond lengths. In contrast, H + C6H5O((XB1)-B-2) products formed after excitation at short lambda(phot) exhibit anisotropic recoil-velocity distributions, consistent with prompt dissociation induced by coupling between the photoprepared (1)pi pi* excited state and the (1)pi sigma* PIES. The fragmentation dynamics of thiophenol at all lambda(phot) matches the latter behavior more closely, reflecting the different relative dispositions of the (1)pi pi* and 1 pi sigma* PESs. Additional insights are provided by the observed branching into the ground ((XB1)-B-2) and first excited (B-2(2)) states of the resulting C6H5S radicals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据