4.8 Article

Neural substrates underlying human delay and trace eyeblink conditioning

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0800374105

关键词

cerebellum; functional MRI; hippocampus

资金

  1. NIA NIH HHS [R01 AG021501, R01AG021501] Funding Source: Medline

向作者/读者索取更多资源

Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are significant gaps in our knowledge of the neural systems underlying conditioning in humans. For example, evidence from animal and human patient research suggests that the hippocampus plays a critical role during trace eyeblink conditioning, but there is no evidence to date in humans that the hippocampus is active during trace eyeblink conditioning or is differentially responsive to delay and trace paradigms. The present work provides a direct comparison of the neural correlates of human delay and trace eyeblink conditioning by using functional MRI. Behavioral results showed that humans can learn both delay and trace conditioning in parallel. Comparable delay and trace activation was measured in the cerebellum, whereas greater hippocampal activity was detected during trace compared with delay conditioning. These findings further support the position that the cerebellum is involved in both delay and trace eyeblink conditioning whereas the hippocampus is critical for trace eyeblink conditioning. These results-also suggest that the neural circuitry supporting delay and trace eyeblink classical conditioning in humans and laboratory animals may be functionally similar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据