4.8 Article

Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0804746105

关键词

thermodynamics; drug delivery; imaging; membrane protein

资金

  1. University of Rhode Island (URI)
  2. Undergraduate Research Grant
  3. Prostate Cancer Research Program Congressionally Directed Medical Research Programs (CDMRP) [PC050351]
  4. URI Research Awards
  5. DOD Breast Cancer Research Program CDMRP [BC061356, GM073857, GM070895]

向作者/读者索取更多资源

The pH low-insertion peptide (pHLIP) serves as a model system for peptide insertion and folding across a lipid bilayer. It has three general states: (I) soluble in water or (II) bound to the surface of a lipid bilayer as an unstructured monomer, and (III) inserted across the bilayer as a monomeric alpha-helix. We used fluorescence spectroscopy and isothermal titration calorimetry to study the interactions of pHLIP with a paimitoyloleoylphosphatidylcholine (POPC) lipid bilayer and to calculate the transition energies between states. We found that the Gibbs free energy of binding to a POPC surface at low pHLIP concentration (state I-state II transition) at 37 degrees C is approximately -7 kcal/mol near neutral pH and that the free energy of insertion and folding across a lipid bilayer at low pH (state II-state III transition) is nearly -2 kcal/mol. We discuss a number of related thermodynamic parameters from our measurements. Besides its fundamental interest as a model system for the study of membrane protein folding, pHLIP has utility as an agent to target diseased tissues and translocate molecules through the membrane into the cytoplasm of cells in environments with elevated levels of extracellular acidity, as in cancer and inflammation. The results give the amount of energy that might be used to move cargo molecules across a membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据