4.8 Article

A synthetic mammalian gene circuit reveals antituberculosis compounds

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0800663105

关键词

genetic engineering; biology; antibiotic; ethionamide; Mycobacterium

向作者/读者索取更多资源

Synthetic biology provides insight into natural gene-network dynamics and enables assembly of engineered transcription circuitries for production of difficult-to-access therapeutic molecules. In Mycobacterium tuberculosis EthR binds to a specific operator (O(ethR)) thereby repressing ethA and preventing EthA-catalyzed conversion of the prodrug ethionamide, which increases the resistance of the pathogen to this last-line-of-defense treatment. We have designed a synthetic mammalian gene circuit that senses the EthR-O(ethR) interaction in human cells and produces a quantitative reporter gene expression readout. Challenging of the synthetic network with compounds of a rationally designed chemical library revealed 2-phenylethyl-butyrate as a nontoxic substance that abolished EthR's repressor function inside human cells, in mice, and within M. tuberculosis where it triggered derepression of ethA and increased the sensitivity of this pathogen to ethionamide. The discovery of antituberculosis compounds by using synthetic mammalian gene circuits may establish a new line of defense against multidrug-resistant M. tuberculosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据