4.8 Article

Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0808842105

关键词

transcription attenuation; translational control; NusA

资金

  1. National Institutes of Health [National Institutes of Health Grant GM52840]

向作者/读者索取更多资源

NusA and NusG are transcription elongation factors that bind to RNA polymerase (RNAP) after (sigma subunit release. Escherichia coli NusA (NusA(Ec)) stimulates intrinsic termination and RNAP(Ec) pausing, whereas NusG(Ec) promotes Rho-dependent termination and pause escape. Both Nus factors also participate in the formation of RNAP(Ec) antitermination complexes. We showed that Bacillus subtilis NusA (NusA(Bs)) stimulates intrinsic termination and RNAP(Bs) pausing at U107 and U144 in the trpEDCFBA operon leader. Pausing at U107 and U144 participates in the transcription attenuation and translational control mechanisms, respectively, presumably by providing additional time for trp RNA-binding attenuation protein (TRAP) to bind to the nascent trp leader transcript. Here, we show that NusG(Bs) causes modest pause stimulation at U107 and dramatic pause stimulation at U144. NusA(Bs) and NusG(Bs) act synergistically to increase the U107 and U144 pause half-lives. NusG(Bs)-stimulated pausing at U144 requires RNAPBs, whereas NusA(Bs) stimulates pausing of RNAP(Bs) and RNAP(Ec) at the U144 and E. coli his pause sites. Although NusG(Ec) does not stimulate pausing at U144, it competes with NusG(Bs)-stimulated pausing, suggesting that both proteins bind to the same surface of RNAP(Bs). Inactivation of nusG results in the loss of RNAP pausing at U144 in vivo and elevated trp operon expression, whereas plasmid-encoded NusG complements the mutant defects. Overexpression of nusG reduces trp operon expression to a larger extent than overexpression of nusA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据